
Popcorn Project:

Replicated-kernel Linux

Antonio Barbalace
antoniob@vt.edu

Systems Software Research Group at Virginia Tech

http://ssrg.ece.vt.edu

VTLUUG meeting , May 2nd 2013

2

Popcorn Linux

• A replicated-kernel OS (multi-kernel)

• Based on Linux 3.2.14

• Supports the x86-64 arch (an x86-32 patch exists)

• Project started summer 2012

• Website: www.popcornlinux.org

• Patches available on the website

• Git repositories on TO BE ANNOUNCED

• Requires multiprocessor (multi-core) hardware

3

Pervasive Multiprocessor

Hardware Technology
• Today’s computing hardware is

multiprocessor (multi-core)
• from embedded to server-class computers

and in high performance computing (HPC)

• Different processors (cores) share access
to a common memory

• Various multiprocessor topologies exist
• fat tree, mesh, torus, ..

• Linux supports multiprocessor hardware
as a symmetric multiprocessing (SMP)
operating system (OS)

4

A Single Operating System

(resource point of view)

• Traditional SMP operating systems, like vanilla
Linux, are single kernel image (monolithic)

– The kernel state must be accessed concurrently
by the different CPUs to be kept consistent

– Performance penalties for accessing resources

• A replicated-kernel operating system is built
on top of multiple instances of a kernel image

– Every kernel maintains its own state concerning
its own resources

– There is no performance penalty to access local
resources

5

krn2

A Single Operating System

(application point of view)
• An application running on a traditional SMP OS is expecting a

predefined environment
– In order to interact with other processes

– In order to interact with different threads

• In a replicated-kernel OS this property is guaranteed by providing
the applications with a single system image (ssi)
– An application written for a traditional SMP OS can run transparently

on the new OS (recompilation is not required)

krn0 krn1

cpu0 cpu1

ssi

application

krn0

cpu0 cpu1

system image

application

cpu2 cpu2

6

Do similar projects exist?

• Research projects, custom kernels
– Hurricane, Stanford (1992)

– Hive, Stanford (SGI IRIX UNIX mod, 1995)

– Disco/Cellular Disco, Stanford (1997)

– Barrelfish, ETH Zurich, MS Research (2009)

– FOS, MIT CSAIL (2009)

• Previous attempts on Linux (to replace virtualization):
– Twin Linux (no source-code, and GPL?)

– Linux Mint (no source-code again!)

– SHIMOS (Single Hardware with Independent Multiple Operating
Systems) (same story …)

– coLinux (do you really want Linux and MS Windows to coexist?)

The dates reported refers to the year of publication or their representative papers, not the start of the project.

virtualization

multikernel

7

Virtualization or Replicated-kernel?

• Virtualization Technologies reborn at the end of 90s from a
replicated-kernel project: Disco/Cellular Disco

• Disco/Cellular Disco was the last of a series of Operating
System for emerging multiprocessor computers
– Disco paper’s title: “Running Commodity Operating Systems on

Scalable multiprocessors”

– Its predecessor, Hive, was implemented as a variant or IRIX,
UNIX from SGI

– Hive paper’s title “Hive: Fault Containment for Shared-Memory
Multiprocessors”

– The predecessor of Hive was called Hurricane

• Disco/Cellular Disco evolved into a company called VMware

8

Peer Kernels

• All kernel instances are peers that reside within
different resource partitions

– This is different from virtualization where there is a
host (privileged) and many guest kernels

– Virtualization allows time-sharing resources at OS
granularity (temporal and space partitioning)

• From each kernel the user can:

– Boot any other kernel

– Run any service

– Control any of the hardware devices, if they are
included in the kernel’s resource partition

krn

K
rn

1

K
rn

2

K
rn

3

HW

K
rn

0
K

rn
0

K
rn

1

K
rn

2

K
rn

3

HW

Virtualization

Peer kernels

hypervisor

9

Multikernel or Replicated-kernel?

• Barrelfish paper: “The Multikernel: A new OS architecture for
scalable multicore systems”
– A multikernel OS was defined around the following principles:

• Make all inter-core communication explicit

• Make OS structure hardware-neutral

• View state as replicated instead of shared

• The replicated-kernel (multi-kernel) OS architecture mixes
concepts from the multikernel and distributed OS designs
– In a replicated-kernel (similar to a multikernel):

• Inter-kernel communication enables OS state consistency (a kernel can run on
any subsets of cores)

• Applications developed for a SMP OS transparently run on a replicated-kernel

• Replication can also exploited at application level (heterogeneous ISA)

– We believe that the replicated-kernel model can be applied to any
traditional OS without ground-up redesign (like distributed OS)

Multikernel

Replicated-

kernel

10

Popcorn can be used as

• A single operating system made up of multiple
Linux kernels (replicated-kernel)

– kernels are peers and must communicate and keep
their state coherent

– applications can run over all the hardware

• An alternative to virtual machines (federation of
SMP OS, we compared with KVM)

– kernels are independent from one another

– applications can run on the resource partition
assigned to that kernel

11

Abundant Resources

• Partitioning and clustering of hardware

resources

• Static and dynamic resource partitioning

and clustering

12

Example: Physical Memory Partitioning

• Basic approach: consider
the whole memory as a
single chunk that is globally
accessible with the same
latency cost (not NUMA-
aware)

• NUMA-aware: the entire
memory is subdivided
between kernels based on
the available memory and
cores resident on each
node. The system topology
is given the greatest weight
in deciding how to allocate
private memory windows
and shared memory areas

13

Exclusive Resources

• Not all hardware resources can be partitioned

(or clustered) easily

• Hardware peripherals are usually limited in

number and can not easily shared

• Master/worker model to access exclusive

resources (plus messages)

• Alternative: exploit virtualization hardware

solutions

14

Resource Subdivision Example

P
ro
c
e
s
s
o
r
0

Core 0 Core 1

LAPIC x00 LAPIC x01

Core 0 Core 1

LAPIC x10 LAPIC x11

P
ro
c
e
s
s
o
r
1

M
a
in
 M
e
m
o
ry Memory Node 0

Memory Node 1

Device 0

Device 2

Device 1

Device 3D
e
v
ic
e
s

Core 0 Core 1

LAPIC x00 LAPIC x01

15

Replicated-kernel: Messaging

• Barrelfish and the microkernel community:
“Communicating by message passing in a OS is not
more expensive than using shared memory”

• In an SMP OS there is a single kernel status that is kept
coherent using shared data structures with locking

• In a replicated-kernel, different kernel instances are
kept coherent by means of messages

• This approach maps well to heterogeneous systems
– Explicit messaging has the advantage of being easily

marshaled or converted

– Messages can be sent on shared memory or via any
available hardware messaging peripherals

16

Inter-Kernel Process Migration

• Based on (the first release of) inter-kernel
messaging

• The address space content of the application is at
the same physical address
– there is one copy of the memory of the process

– all of the virtual mapping (vm_area_struct items)
is copied from the source to the remote kernel

– all of the page global directory (mm->pgd) mappings,
with their flags, is copied

• On any kernel a process server is loaded at
initialization to accept migrating processes

17

Results: Process Migration

• Initial results (25th March 2013) on process migration

• In Linux, sched_setaffinity() moves a process
between cores in 600us on average (64x AMD Opteron 6274)

18

Inter-Kernel Virtual Network Switch

• First version based on Linux TUN/TAP interface,
runs in userspace

• Second version based on Linux TUN/TAP interface
in kernel-space

• Current version is hybrid interrupt and polling
mechanism based on Linux NAPI (kernel-space)

– Fast ring buffers in shared memory between client
and server

– Under high traffic, using polling reduces the overhead
of servicing thousands of interrupts per second

19

Apache Bench Test Setup

Apache Bench

is running here

Hardware

Network

switch

nginx

is running here

roastduck

10.1.1.63

gigi

10.1.1.31

1Gb Ethernet Network

64-core AMD Opteron 6274 machine

10.1.2.1 10.1.2.3

10.1.2.2 10.1.2.4

Software Network Switch

Packet

Flow

Primary Kernel (Popcorn)

or Host Kernel (KVM)

Secondary Kernel (Popcorn)

or Guest Kernel (KVM)

20

Results: Webserver, Apache Bench

21

NPB MPI Setup

• We ran NASA Parallel Benchmarks (NPB) MPI
version to verify that Popcorn maintains the
compute bound performance of Linux

– We compared it with KVM and SMP Linux

– We tested one kernel per core configuration
(partitioned Popcorn)

– We tested one kernel per NUMA node configuration
(clustered Popcorn)

• We used MPICH2 in all configurations (KVM uses
an inter-VM shared memory called ‘Nahanni’)

22

Results: Compute Bound, IS-NPB

23

Results: Compute Bound, CG-NPB

24

Adopting Popcorn (a summary)

• Many different kernels

• Every kernel is responsible of a subset of all physical
resources (CPUs, memory, devices, etc.) present in the
machine

• A single Operating System state is kept coherent across
different kernels, not every kernel object must be kept
coherent across all kernels (single OS configuration only)

• Applications can transparently use all physical resources
present in the machine

• Applications on different kernels can communicate

• Applications see a Single System Image and can
transparently migrate on different kernels (single OS
configuration only)

25

Questions? Team

www.popcornlinux.org

