
PLDI: G: Seamlessly Crossing ISA Boundaries for Performance and Security

Robert Lyerly – Ph.D. Student, Advisor: Binoy Ravindran
Bradley Department of Electrical and Computer Engineering, Virginia Tech

{rlyerly, binoy}@vt.edu

1 Problem and Motivation

With the slowdown of performance scaling due to the end
of Moore’s law, processor architects have increasingly turned
to heterogeneity in order to continue advancing performance
and energy efficiency [5]. In particular, chip designers have
begun incorporating heterogeneous computing elements into
systems in order accelerate workloads or achieve different lev-
els of parallelism and energy efficiency. With this explosion of
heterogeneity, however, has come a rising cost in application
complexity. Each new processor arrives with its own devel-
opment environment, forcing developers to continually learn
both new architectures and new programming models. For
example, using OpenCL to offload computation onto Intel’s
Xeon Phi processor requires on average doubling an appli-
cation’s lines of code versus a single threaded implementa-
tion [2]. This programmability burden has spurred new inter-
est in system software to help tame application complexity.

Recently, several works have proposed thread migration be-
tween heterogeneous instruction set architecture (ISA) CPUs
to obtain better performance and energy efficiency [4, 2, 13].
Developers do not have to learn a new programming model
or refactor applications into a new framework to take advan-
tage of heterogeneity; instead they simply use a custom com-
piler and runtime [4, 13] or new operating system abstrac-
tions [2] to migrate thread contexts between different-ISA
processors. However, these systems have many limitations.
DeVuyst et al. [4] and Venkat and Tullsen [13] only provide
the ability to migrate single-threaded applications in a simu-
lated heterogeneous-ISA processor. They additionally scope
out any operating system (OS) details for running on such
a system. Conversely, Barbalace et al. [2] only describe OS
mechanisms necessary for thread migration in overlapping-
ISA systems (i.e., no compiler support is required). None of
these systems work across emerging heterogeneous-ISA sys-
tems like those being introduced into datacenters [12].

The first contribution of this work is a compiler and runtime
for heterogeneous-ISA thread migration on real hardware.
These mechanisms are built on top of Popcorn Linux [1], an
OS which provides thread migration and distributed shared
memory (DSM) capabilities for cross-machine application ex-
ecution. The compiler and runtime are co-designed with the
OS to completely automate the process of inter-ISA thread
migration. This allows programmers to transparently lever-
age commodity heterogeneous-ISA systems, and can be used
to easily exploit ISA-specific extensions, e.g., cryptography or
SIMD instructions.

In addition to providing the core compiler and runtime, the
other contributions of this work exploit heterogeneity in pre-
viously unseen scenarios. First, this new infrastructure can
be leveraged to scale applications across heterogeneous-ISA

clusters. In a cluster with an x86 Intel Xeon E5-2620v4 (8
cores/16 threads, max 3GHz clock) and a two-socket ARM
Cavium ThunderX (96 cores, 2GHz clock), fork-join applica-
tions could run single-threaded phases on a high-power Xeon
core and parallel phases on both the lower core count Xeon
and the highly parallel ThunderX processors. Application de-
velopers can easily take advantage of processors designed to
meet different performance, power and parallelism goals for
various parts of an application. Second, by removing machine
and ISA boundaries, this system could be used to mitigate
a host of security threats, such as return-oriented program-
ming (ROP) [3] or side-channel attacks such as Meltdown
and Spectre [9, 8]. ROP attacks, which construct ISA-specific
“gadgets” from existing application code, could be disrupted
by migrating threads and data between different-ISA proces-
sors, thereby randomizing code and data layouts. Migrating
threads between physically separate machines also eliminates
side channels, i.e., shared resources observed to leak sensitive
information or manipulated to redirect application execution.

Thus, the contributions of this work are the compiler and
runtime components of Popcorn Linux, and how they are
leveraged in novel settings.

2 Background and Related Work

Current programming models such as OpenCL and OpenMP
provide a functionally-portable interface for offloading compu-
tation to heterogeneous processors such as GPUs. However,
these models only support a subset of functionality on the
target (e.g., no I/O) and require the developer to manually
marshal data between the host and device (e.g., flattening
data structures, maintaining consistency). Additionally, tar-
get architectures are hard-coded, preventing flexible execu-
tion in multiprogrammed settings. Using a message-passing
framework like MPI allows processes to utilize the system’s
full functionality but does not solve the problems of data mar-
shaling and static application partitions.

Previous works such as the TUI system [11] studied process
migration in heterogeneous-ISA platforms using state trans-
formation techniques across networks of machines. However,
they incur extensive overheads as they translate the entire
virtual address space between ISA-specific formats, including
transforming global data and the heap between per-ISA data
layouts in addition to generating per-ISA machine code. More
recently, Barbalace et al. developed OS mechanisms to re-
move execution boundaries between overlapping-ISA proces-
sors such as Xeon/Xeon Phi systems [2]. In particular, they
describe thread and page migration mechanisms to transpar-
ently move threads of execution between different processors
while providing a single system abstraction to the applica-
tion. Other works study offloading from mobile systems to
the cloud [7], but require writing the application in a managed

1



Figure 1: Popcorn Linux’s compiler, built on clang/LLVM

language, object semantics for data migration, and extensive
modifications to the language VM. Additionally, they only
support offloading statically-selected portions of applications.

DeVuyst et al. [4] and Venkat and Tullsen [13] describe
compiler and runtime thread migration mechanisms in a simu-
lated heterogeneous-ISA processor. Threads migrate between
different-ISA cores at equivalence points [14], or points at
which the application has reached a semantically equivalent
state of the computation and there exists a valid transforma-
tion of a thread’s execution state (stack, registers) between
ISA-specific formats. In their system, applications run us-
ing native execution until a migration is triggered, at which
point a thread’s state is exported to QEMU. Upon reaching
an equivalence point inside the emulator, a runtime translates
the thread’s stack to the destination ISA’s format and returns
the thread to native execution.

Popcorn Linux [1] synthesizes these OS and compiler tech-
niques into a complete system which runs on commodity
heterogeneous-ISA CPUs networked via commercially avail-
able links, e.g., Ethernet, Infiniband and point-to-point PCIe.
Popcorn Linux allows applications to transparently migrate
between heterogeneous-ISA CPUs without developer inter-
vention. The compiler builds applications instrumented with
migration points (unlike previous works which import/export
thread contexts into a complex dynamic binary translation
runtime [4, 13]). At runtime, threads are signaled by a sched-
uler to migrate between systems. Threads use metadata gen-
erated during compilation describing ISA-specific function ac-
tivation layouts to transform their stack between ISA-specific
formats. Threads then invoke the OS’ thread migration mech-
anism, which starts the thread on the destination node using
the transformed register state. As threads access memory,
the OS’ distributed shared memory (DSM) protocol brings
pages over on-demand by intercepting the page fault handler.
Thus, applications can seamlessly migrate and access data
on heterogeneous-ISA architectures without any specialized
programming model or middleware.

3 Uniqueness of the Approach

Heterogeneity has long been believed to be the main path
forward to scaling performance. However, system software
has only recently begun to make utilizing these architecture
easier. Popcorn Linux is a system software innovation whose
power arises from extending well-studied OS mechanisms into
the hardware diversity jungle. It allows developers to not only
utilize existing programming idioms to evaluate and leverage
diverse architectures, but also allows developers to enjoy the
benefits afforded by the robust Linux development ecosystem.

Figure 1 shows the compiler toolchain used for transpar-

Figure 2: Popcorn Linux Operating System

ently supporting inter-ISA migration. The compiler and run-
time mechanisms for migration integrate cleanly into LLVM,
as it provides a strong separation between ISA-agnostic and
ISA-specific components. Thus, instrumentation needed to
create migratable applications can be inserted at only a few
choice locations in the compilation process. Coupled with
LLVM’s extensive list of supported architectures, these mech-
anisms can be extended to new architectures with minimal
engineering cost once the core components have been built.
Developers do not have to refactor any component of their
application to make them migratable.

Figure 2 shows how Popcorn Linux provides a single sys-
tem image to applications. With full-fledged OS capabili-
ties across distinct machines, applications can take advantage
of facilities such as the scheduler, I/O, and shared-memory
synchronization (including OS-supported capabilities like fu-
texes). This is in contrast to current programming models
for heterogeneous architectures, which have numerous restric-
tions and only provide low-level building blocks. Developers
are required to continually re-build these abstractions for each
new architecture in addition to learning a new development
environment. Popcorn Linux provides a middle ground, where
developers can achieve the benefits of heterogeneous proces-
sors with the ease of programming a shared-memory system.

However, there are new challenges that make it distinct
from traditional shared-memory SMP systems. The main
challenge arises by the move from hardware cache coherency
to software DSM. Although applications run as-is, under the
covers nodes exchange significant numbers of messages in or-
der to provide a single operating environment. Unlike NUMA
systems where memory accesses on remote zones may incur
a fractional latency penalty, remote memory accesses incur
orders of magnitude more latency – from 100s of nanoseconds
to tens of microseconds. Traditional microarchitectural la-
tency hiding techniques such as simultaneous multithreading
are no longer effective, meaning the application’s page access
patterns must be optimized in order to reduce or eliminate
performance bottlenecks. Innovations in the compiler and
runtime are required in order to fully exploit the capabilities
of emerging heterogeneous-ISA systems.

4 Results and Contributions

In this section we describe the compiler and runtime contri-
butions designed for Popcorn Linux’s existing thread migra-
tion and DSM layers. Section 4.1 describes the compiler and

2



Figure 3: Energy (top) and energy-delay product (bottom) of
several sets of applications load balanced across homogeneous-
and heterogeneous-ISA systems.

runtime mechanisms developed to migrate threads between
different-ISA processors. Section 4.2 describes techniques for
leveraging multiple machines simultaneously, include reduc-
ing contention on Popcorn Linux’s DSM subsystem. Finally,
Section 4.3 describes ongoing work related to using these ca-
pabilities to defend against ROP or side-channel attacks.

4.1 Compiler/Runtime For Dynamic Migration

The compiler toolchain, based on clang/LLVM, takes POSIX-
compliant C or C++ source code as input and uses a custom
compiler, linker and post-processing tools to generate multi-
ISA binaries suitable for runtime migration. At runtime, a
state transformation library converts a thread’s stack between
ISA-specific formats and a migration library handles migrat-
ing and restarting a thread on the destination architecture.

Design. The migration mechanisms are designed both to
add as little overhead as possible and to seamlessly integrate
into Popcorn Linux. Thus, most pieces of the application
(global memory, code) are laid out in a common format so the
virtual address space does not need to be rearranged at mi-
gration time. The thread’s execution state (registers, stack)
is maintained in an ISA-specific format and transformed be-
fore migration, as forcing a common stack layout across all
ISAs would cause the compiler to generate sub-optimal code
(all live values would have to reside in memory). Instead,
the compiler generates metadata describing stack layouts for
runtime state transformation. Additionally, rather than al-
lowing migration at arbitrary points by emulating up until an
equivalence point (which causes high overheads from import-
ing/exporting state into the emulator and code-cache effects),
threads migrate at call-outs inserted by the compiler.

Compiler. First, clang lowers the source code to LLVM
bitcode. Next, custom passes analyze the bitcode to both au-
tomatically instrument the application with migration points
and tag all call sites (i.e., possible transformation sites) with
stackmaps denoting all live values at the call site; these are
the values that must be handled during the state transfor-
mation process. Then, the ISA-agnostic bitcode is lowered
through each target architecture’s backend to generate ma-
chine code for each ISA in the system. As the bitcode is low-

ered, each backend records implementation information about
each function (e.g., call frame size, callee-saved registers) and
where live values at each call site are allocated (e.g., register,
stack slot, constant pool). After compilation, a custom linker
creates a common thread local storage layout and aligns all
global symbols, so that references to each program object are
valid across all architectures.

Runtime. At runtime, a scheduler cooperates with threads
to invoke migrations. When a migration is triggered, the
thread passes a snapshot of its registers to the state trans-
formation runtime. The runtime first unwinds the thread’s
stack to both read in the metadata for each live function acti-
vation (for both source and destination ISAs) and to calculate
the size of the transformed stack. Next, the runtime iter-
ates from the most-recently called function inwards, copying
live values between their ISA-specific locations and fixing up
other frame data (e.g., return values, callee-saved registers,
etc.). The runtime returns a transformed register set to the
migration library, which invokes the kernel’s thread migration
service. The kernel returns the thread to userspace with the
transformed register set, where the migration library returns
the thread to normal execution. The kernel brings data over
on-demand through page faults as threads access both code
and data, as the restarted threads have no pages mapped into
memory upon returning to userspace.

Results. We evaluated the system on an Intel Xeon E5-
1650v2 interconnected to an ARM AppliedMicro X-Gene via
Dolphin PXH810 PCIe point-to-point cards. Figure 3 [1]
shows the energy consumption (top) and energy-delay prod-
uct (bottom) of several sets of application workloads drawn
from the NASA parallel benchmark suite. The left bars
show the results for a homogeneous-ISA setup with two
Xeon machines versus the right bars which represent the
heterogeneous-ISA setup. Over all sets, the heterogeneous-
ISA setup demonstrates on average a 30% reduction in energy
and a 11% reduction in EDP versus the homogeneous setup,
demonstrating the benefits of using Popcorn Linux for system
flexibility when faced with dynamic workloads.

4.2 Ongoing: Scaling to a Heterogeneous Cluster

Compute kernel work splitting, i.e., distributing parallel com-
putation across multiple architectures simultaneously, has
been shown to achieve large performance gains in CPU/GPU
systems [10]. However, these systems have programmabil-
ity limitations and limited ability to automatically distribute
work across processors (e.g., developer-guided data partition-
ing). With Popcorn Linux, developers can utilize standard
threading models like OpenMP as-is on heterogeneous-ISA
clusters without redesigning applications. Popcorn Linux’s
programmability advantages allow developers to utilize mul-
tiple machines as a single large scale-up server.

Popcorn Linux enables this flexibility through on-demand
page migration and DSM. Popcorn Linux’s DSM protocol op-
erates like a MSI-style cache coherence protocol at the granu-
larity of a page (as the OS observes memory accesses via CPU
page faults). As threads migrate between machines and read
memory, pages are replicated in a read-only state and incur a

3



one-time migration cost. Threads writing to memory instead
cause the system to grant exclusive access to the machine ex-
ecuting the write. Thus, machines collectively have sequen-
tial consistency and existing synchronization primitives, e.g.,
spinlocks, can run unmodified across a cluster.

However, Popcorn Linux’s DSM protocol and page migra-
tions do come with a cost. As mentioned in Section 3, a mem-
ory access that causes an inter-machine page migration takes
on the order of tens of microseconds. Thus, while applications
run correctly under Popcorn Linux, their structure may lead
to sub-optimal page access patterns and inter-machine migra-
tion thrashing. For example, 2 threads executing on different
machines and writing to separate global objects mapped to
the same page in the virtual address space will cause the DSM
protocol to repeatedly unmap the page from one machine and
migrate it to the other. This “ping-pong” behavior is simi-
lar to false-sharing of cache lines, although at a much larger
granularity and latency.

Fortunately, due to Popcorn Linux’s flexibility oftentimes
small adjustments to the application mitigate or eliminate
false sharing. For example, placing per-thread data struc-
tures or heavily-used global data onto separate pages often
reduces page migrations caused by threads on separate nodes.
These optimizations have low memory overhead, especially
with 64-bit virtual address spaces. Popcorn Linux makes it
easy to profile, debug performance bottlenecks and iteratively
improve applications with minimal development effort.

Profiling page access patterns. In order to help devel-
opers analyze memory access patterns, the kernel can dump a
page access trace describing the DSM protocol’s actions. For
each inter-machine page migration, the DSM protocol writes a
tuple containing fault information (address, instruction, per-
mission type, etc.). A page access trace tool uses this informa-
tion together with the binary to generate statistics and iden-
tify program locations causing the most inter-machine mem-
ory contention. Using this information allows developers to
spot sub-optimal memory access patterns, including cyclical
page fault patterns (e.g., read-replicating a page across all
machines followed by writes causing invalidation storms) or
separate global objects mapped to the same page causing un-
necessary contention. Developers can then make adjustments
to alleviate these issues (e.g., applying alignment attributes
to data structures).

Per-Node Memory Allocator. One source of sub-
optimal memory access patterns that is hard for developers
to change is the memory allocator. Applications that allo-
cate many small objects on the heap may cause enormous
DSM pressure, as the allocator may naively allocate lots of ob-
jects accessed by threads on different nodes to the same page.
Rather than forcing developers to refactor malloc() usage
within applications, we instead developed a node-aware mem-
ory allocator. We extended the idea of heap arenas from other
allocators like jemalloc [6] and modified the default memory
allocator in Popcorn Linux’s libc library. Our malloc imple-
mentation uses a per-node heap so that threads allocate heap
memory local to the node on which they’re executing, min-
imizing unnecessary conflicts with threads on other nodes.

Figure 4: Lazy/on-demand page migration. Every new page
access incurs an inter-node fault.

Figure 5: Prefetching pages minimizes the long latencies as-
sociated with inter-node faults.

Threads can also move an allocation between per-node heaps
using realloc() if necessary. Data allocated in any of the
per-node heaps is accessible on any node in order to not break
the shared-memory abstraction, but the heap itself is logically
partitioned between nodes to prevent contention.

Prefetching. Even with reduced memory contention,
most non-trivial applications still execute cross-node memory
accesses. Figure 4 demonstrates the long latencies associated
with on-demand migration – threads spend significant time
waiting for pages in-between bursts of computation. If appli-
cations demonstrate predictable memory access patterns, the
toolchain can give the DSM layer prefetching hints on where
to place pages in the system. A small prefetching library
batches together per-node prefetch requests from application
threads and informs the DSM layer via madvise(). Figure 5
shows an example of how prefetching can reduce page access
times for threads. Prefetching does not impact the correctness
of the application, but instead gives the DSM layer informa-
tion on where it can place pages to reduce contention.

Rather than requiring developers to manually instrument
applications with prefetching hints, we developed compiler
extensions inside clang to insert prefetching hints based on
loop iteration ranges and array access patterns. Develop-
ers add a #pragma popcorn prefetch annotation to a struc-
tured block (e.g., for-loop), giving the compiler scoping infor-
mation for analysis. The frontend analyzes access patterns
and any loop bounds to generate calls to the prefetching li-
brary. This not only reduces the amount of inter-node migra-
tion traffic, but also can utilize output from the page access
trace tool to generate better hints and inform the developer of
potential bottlenecks in a feedback-driven optimization loop.

OpenMP-specific optimizations. OpenMP provides a
strong semantic base onto which we can add Popcorn Linux-
specific optimizations. We extended OpenMP’s work shar-
ing constructs in several ways to optimize for Popcorn Linux.
First, we added a prefetch clause which when added to work
sharing directives informs the compiler to analyze and emit
prefetch calls as described above. A small difference is that
rather than prefetching for entire loop iteration ranges, the
compiler inserts prefetch calls for the partitioned loop itera-
tion range assigned to each thread. Additionally, variables in-

4



cluded in an OpenMP shared clause (semantically, all threads
share a copy of the same variable) are copied into global mem-
ory for the duration of the parallel section and copied back
into stack memory after. Normally the compiler allocates
space for these variables on the main thread’s stack and passes
a reference to all team threads. This leads to false sharing
caused by all threads accessing the main thread’s stack data
and contending with the main thread’s normal stack usage.

In addition to compiler-specific features, we also are exper-
imenting with OpenMP runtime changes. The first change
is to the barrier implementation, which is implicitly called
at the end of most OpenMP directives. The current imple-
mentation spins for a number of cycles and eventually waits
using futexes. While semantically correct, the spinning por-
tion of the barrier is sub-optimal on Popcorn Linux, as it can
lead to short bursts of rapid page migrations. Instead, we are
modifying the barrier implementation to use a hierarchical
approach. Instead of spinning globally, threads first synchro-
nize on a per-node local barrier. The last thread to reach each
of the local barriers then waits on a global barrier, reducing
both synchronization pressure and page migrations.

The last runtime change we are exploring is dynamic loop
splitting. OpenMP by default distributes work evenly across
all available cores. However in a heterogeneous-ISA sys-
tem, the cores may have vastly different performance pro-
files. Rather than evenly splitting the work across cores, we
are developing new work sharing heuristics, such as extend-
ing OpenMP’s dynamic loop scheduler based on a hierarchical
approach. For example, a two level scheduler would first split
the loop iteration ranges based on a performance capacity es-
timate of each system executing the parallel region. Next,
loop iterations could be assigned to each core in each system
from that system’s total range of loop iteration ranges. This
will also have an impact on the prefetching capabilities of the
compiler, as its ability to insert prefetch calls requires a-priori
knowledge of how loop iterations are assigned to each node.

4.3 Future Work: Popcorn Linux for Security

Inter-machine and inter-ISA migration can also be used to
defend against several classes of attacks. As mentioned previ-
ously, ROP attacks chain together small sequences of machine
code to construct functionality. Inter-ISA migration disrupts
these attacks by changing the code stitched together by the
attacker. Small sequences of instructions turn into random
noise, breaking the gadget. The metadata generated by the
compiler also provides some interesting capabilities – for ex-
ample, when unwinding the stack to look up transformation
metadata, the compiler can perform a control-flow integrity
check to see if the stack has been disrupted for use by a ROP
gadget. Additionally, the metadata gives the transformation
runtime the ability to dynamically adjust both locations of
stack and register data, and locations of global data (e.g., run-
time address space randomization). This requires the ability
to find live value locations and global memory references at
runtime, capabilities that can be easily built into the trans-
formation process. Because state transformation only takes
hundreds of microseconds [1], frequent or randomized migra-

tions could also be used to disrupt side-channel attacks. These
attacks require priming microarchitectural state – migrating
between machines which do not share this state would elim-
inate these information leakages. We plan to explore using
these capabilities to defend against a number of security at-
tacks with low overhead on commodity hardware.

References

[1] Barbalace, A., Lyerly, R., Jelesnianski, C., Carno, A.,
Chuang, H.-R., Legout, V., and Ravindran, B. Breaking the
Boundaries in Heterogeneous-ISA Datacenters. In Proceedings of
the Twenty Second International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (2017),
ASPLOS XXII. To Appear.

[2] Barbalace, A., Sadini, M., Ansary, S., Jelesnianski, C.,
Ravichandran, A., Kendir, C., Murray, A., and Ravindran,
B. Popcorn: Bridging the Programmability Gap in heterogeneous-
ISA Platforms. In Proceedings of the Tenth European Conference
on Computer Systems (New York, NY, USA, 2015), EuroSys ’15,
ACM, pp. 29:1–29:16.

[3] Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.-R.,
Shacham, H., and Winandy, M. Return-oriented programming
without returns. In Proceedings of the 17th ACM Conference on
Computer and Communications Security (New York, NY, USA,
2010), CCS ’10, ACM, pp. 559–572.

[4] DeVuyst, M., Venkat, A., and Tullsen, D. M. Execution migra-
tion in a heterogeneous-isa chip multiprocessor. In Proceedings of
the Seventeenth International Conference on Architectural Support
for Programming Languages and Operating Systems (New York,
NY, USA, 2012), ASPLOS XVII, ACM, pp. 261–272.

[5] Eeckhout, L. Is moore’s law slowing down? what’s next? IEEE
Micro 37, 4 (2017), 4–5.

[6] Evans, J. A scalable concurrent malloc (3) implementation for
freebsd. In Proc. of the BSDCan Conference, Ottawa, Canada
(2006).

[7] Gordon, M. S., Jamshidi, D. A., Mahlke, S., Mao, Z. M., and
Chen, X. Comet: Code offload by migrating execution transpar-
ently. In Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation (Berkeley, CA, USA, 2012),
OSDI’12, USENIX Association, pp. 93–106.

[8] Kocher, P., Genkin, D., Gruss, D., Haas, W., Hamburg, M.,
L ipp, M., Mangard, S., Prescher, T., Schwarz, M., and
Yarom, Y. Spectre attacks: Exploiting speculative execution.
ArXiv e-prints (Jan. 2018).

[9] Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W.,
Mangard, S., Kocher, P., Genkin, D., Yarom, Y., and Ham-
burg, M. Meltdown. ArXiv e-prints (Jan. 2018).

[10] Luk, C.-K., Hong, S., and Kim, H. Qilin: Exploiting parallelism
on heterogeneous multiprocessors with adaptive mapping. In Pro-
ceedings of the 42Nd Annual IEEE/ACM International Symposium
on Microarchitecture (New York, NY, USA, 2009), MICRO 42,
ACM, pp. 45–55.

[11] Smith, P., and Hutchinson, N. C. Heterogeneous process mi-
gration: The Tui system. Software-Practice and Experience 28, 6
(1998), 611–640.

[12] Teich, P. Deep Dive Into Qualcomm’s Centriq Arm Server Ecosys-
tem, December 2017. https://www.nextplatform.com/2017/12/

06/deep-dive-qualcomms-centriq-arm-server-ecosystem/.

[13] Venkat, A., and Tullsen, D. M. Harnessing isa diversity: Design
of a heterogeneous-isa chip multiprocessor. In Proceeding of the
41st Annual International Symposium on Computer Architecuture
(Piscataway, NJ, USA, 2014), ISCA ’14, IEEE Press, pp. 121–132.

[14] von Bank, D. G., Shub, C. M., and Sebesta, R. W. A unified
model of pointwise equivalence of procedural computations. ACM
Trans. Program. Lang. Syst. 16, 6 (Nov. 1994), 1842–1874.

5


