
Secure Popcorn:
Using Machine Boundaries to Harden Applications

Rob Lyerly
Systems Software Research Group at Virginia Tech

Cambridge, UK
September 11-13, 2017



The Problem

• Current security mechanisms provide inter-process protection 
or coarse-grained randomization
– SELinux: “bag of permissions”, who can access which files
– ASLR: load-time virtual address space randomization

• Many exploits circumvent these mechanisms to co-opt 
execution & leak information
– Heartbleed: malicious crypto packets read arbitrary memory from server
– Rowhammer: flip DRAM bits by “hammering” data cells
– FLUSH+RELOAD: read memory of co-located processes through shared cache
– Return-oriented programming (ROP): construct arbitrary executions using 

buffer overflow and “gadgets” from application code

• How do we provide stronger inter-/intra-process security?



The Impact

• Eliminate several classes of security exploits
– Information leakage: enforce programmer intent by preventing cross-

component memory accesses in the page-fault handler
 “My image library shouldn’t access my crypto data!”

– Memory side-channel attacks: physically isolate sensitive memory

• Mitigate impact of other security exploits
– Information leakage: randomize virtual address space during execution to hide 

application structure from “owned” threads
– ROP-based attacks: adjust stack layout to destroy “gadgets”

• End-users get security benefits while still being able to write 
applications using shared-memory programming model
– Don’t have to rewrite applications!



Overview of the approach
• Secure Popcorn: an OS, compiler and runtime for secure 

application execution
– Based on Popcorn Linux, a replicated-kernel OS, and ELFbac, a memory 

access control mechanism

• Per-thread execution migration across machine boundaries
– Single system image (SSI) across machines, which provides distributed shared 

memory & file descriptor migration (e.g., filesystem & network interface)
– Migration between heterogeneous-ISA processors, e.g., ARMv8 and x86-64

• Compiler builds multi-ISA 
binaries
– Align code/data symbols across 

compilations of application for all ISAs

• Runtime performs dynamic state 
translation for stack & registers 
between ISA-specific ABIs



Overview of the approach

• Group application components into ELF sections
– Describes programmer intent, i.e., which code should access which data
– Use page fault handler to prevent cross-component memory access

• Randomize memory layout during migration
– Transform stack layout between ABIs – disrupts ROP gadgets
– Randomize layout of global code/data

• Memory leak does not reveal address space layout
• “Owned” thread cannot discover information about other threads

• Isolate sensitive application data across machines
– Hide sensitive information, e.g., cryptographic keys, in “private rooms”
– Prevent memory side-channel attacks


