

leak sensitive information

Rowhammer

Secure Popcorn: Using Machine **Boundaries To Harden Applications**

Robert Lyerly[¢], Sergey Bratus[§] and Binoy Ravindran[¢]

^{\$\phi\$}Systems Software Research Group, ECE Department, Virginia Tech {rlyerly, binoy}@vt.edu

§Institute for Security, Technology, and Society, CS Department, Dartmouth College sergey@cs.dartmouth.edu

Solution: Secure Popcorn Linux

- Secure Popcorn: an OS, compiler and runtime for secure application execution across machine boundaries
- Popcorn Linux compiler/OS/runtime for transparently executing C/C++ shared memory applications across physically distinct heterogeneous-ISA machines

- across machine boundaries • Thread context, code/data pages, file descriptor
- metadata (network, filesystem)
- Migrate between AArch64 and x86-64
- Compiler builds multi-ISA binaries
- Custom virtual address space layout (code & data symbols), aligned across ISAs
- Runtime converts stack/registers between ISA-specific formats during migration
- ELFbac virtual memory access control driven by ELF binary metadata
- ELF section metadata describes how parts of application interact
 - Code and associated data have exclusive relationships describing programmer intent
- Application phases see subset of page table entries, page faults drive phase transitions

- Use existing ELF ABI as policy to partition intra-process computation (and associated data) into isolated physical domains
- Inter-ISA/machine migration mitigates usefulness of info leakages

Key Idea #1: Isolation across Machine Boundaries

How do we provide better inter-/intra-process security?

Problem

provide weak mitigations or incur heavy run-time costs

• **SELinux** – inter-process "bag of permissions", who can access which files

• Control/data-flow integrity – ensure control flow/memory operations use

Return-Oriented

Programming

Heartbleed

Current security mechanisms are too coarse-grained,

legitimate target memory addresses (enormous instrumentation)

Exploits circumvent mechanisms to co-opt execution &

• ASLR – load-time virtual address space layout randomization

Cache-timing Attacks

- Eliminate cache timing attacks by physically separating privileged compute on different machines
 - Use ELFbac's phase transitions to drive thread migration, e.g., "entering crypto phase, migrate to new machine"
 - Popcorn OS overlays shared memory illusion on top of separate physical memory regions, removes sharing of physical last-level cache

• Prevent memory crosstalk bit flips (and potential privilege escalation) by physically isolating access control state

• Secure Popcorn allows transparently placing critical data in physically isolated memory, nullifying traditional information leakage/side-channel attacks

Key Idea #2: Runtime Randomization

 Migrate between ISAs to thwart attacks hand-crafted for a particular ISA's function activation (stack & registers) layout

Migrate randomly or at ELFbac phase boundaries

 Randomize code & data layout (including function activations) during inter-ISA state transformation or any migration

 Inter-ISA migration limits the ability of attackers to chain together gadgets and gives a limited lifetime to the usefulness of any leaked memory layout information

Conclusion

- New exploits and side-channel attacks circumvent stateof-the-art security policy and mitigation mechanisms
- Secure Popcorn utilizes system software innovations for strong physical isolation and continuous randomization
 - Popcorn Linux transparently executes C/C++ shared memory applications across heterogeneous-ISA machines
 - ELFbac enforces programmer intent by utilizing ELF section metadata
- Significantly enhance application security without requiring any developer effort

References

- "Exploiting the DRAM rowhammer bug to gain kernel privileges", Seaborn and Dullien, Black Hat 2015
- "Flush+Reload: A High Resolution, Low Noise, L3 Cache Side-Channel Attack", Yarom and Falkner, USENIX Security Symposium, 2014
- "Heartbleed Bug", http://heartbleed.com/
- "Return-Oriented Programming", Prandini and Ramilli, IEEE Security and Privacy, 2012.
- "Breaking the Boundaries in Heterogeneous-ISA Datacenters", Barbalace et. al, ASPLOS 2017
- "Intra-Process Memory Protection for Applications on ARM and x86: Leveraging the ELF ABI", Bratus, Bangert and Koo, BlackHat USA 2016