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Abstract
With the emergence of both power and performance as pri-
mary design constraints, energy efficiency has become the
new design criteria. A platform with heterogeneous-ISA
processors can provide multiple power-performance execu-
tion points needed for a varied mix of workloads. We argue
that a new system software architecture is needed to obtain
maximum energy efficiency on such heterogeneous-ISA plat-
forms. We present our system software, a replicated-kernel
operating system and a compiler framework, and quantify
the advantages of such a system software on ARM-x86 us-
ing simulations. Based on our experimental observations,
we propose a scheduling approach which considers system
and application runtime characteristics along with platform
profiles to maximize energy efficiency.

Categories and Subject Descriptors
D.4.8 [Operating Systems]: Performance—Simulation; C.1.3
[Processor Architectures]: Other Architecture Styles—
Heterogeneous (hybrid) systems

Keywords
Power Consumption, Performance, Energy Efficiency, Repli-
cated-kernel OS, Heterogeneous Platform

1. INTRODUCTION
Computer architectures are evolving towards greater het-

erogeneity to provide various power-performance execution
points for different mixes of workloads in all areas of com-
puting. With the hitting of power wall and the emergence
of multicore processors, power has become a primary design
constraint [8]. Therefore, minimizing energy consumed by a
workload has emerged as the new design criteria.

As computer architects strive for providing platforms with
multiple non-overlapping power-performance execution points,
having specialized cores with different power-performance
characteristics is an attractive solution indeed. Today, het-
erogeneity can be found in the form of microarchitectural
features within a single-ISA, such as ARM big.LITTLE [12],
or among overlapping ISAs, as in Intel Xeon-Xeon Phi [10].
The other form of heterogeneity is the one in which differ-
ent processor cores implement completely different ISAs. A
CPU-GPU setup is a traditional example for such a case, but
GPUs cannot run an operating system, and are therefore be-
ing exploited as devices by the main processor. However, a

heterogeneous system with different ISA processors that are
OS-capable [2] can provide greater power and performance
benefits as shown in [13].

Today, ARM and x86 are the two most popular architec-
tures known for power efficiency and high performance re-
spectively. Thus, conceiving a heterogeneous platform with
ARM and x86 cores with varying microarchitectural features
can provide a broad range of power-performance execution
points. Even if such platform is not available on the market
as of today, an ARM-x86 system can be created by inter-
connecting an ARM and an x86 processor through PCIe [7].

The prospects of a heterogeneous-ISA platform is excit-
ing but providing the necessary software support to fully
exploit heterogeneous systems is a daunting task and opens
a whole new area of research. Traditional SMP operating
systems like Linux are designed to run on a single ISA and
need a major redesign to support such systems. Moreover,
to ensure optimal utilization of the hardware, an application
needs to be meticulously crafted considering the underlying
architecture. This hinders programmability: it is hard and
time consuming for a programmer to manually identify and
annotate various parts of the application as demonstrated
in CPU-GPU setups. Thus, providing a familiar program-
ming model without losing the power-performance benefits
of the underlying architecture is crucial for the success of
such platforms.

In this paper, we present a new system software architec-
ture for heterogeneous-ISA platforms. Moreover, based on
experimental observations, we describe the parameters that
should be considered while scheduling application threads to
obtain energy benefits. Specifically, we make the following
contributions.

• Introduce a new system software design for heteroge-
neous-ISA platforms.

• Provide a new measurement framework to profile an
application’s energy efficiency at function level.

• Create a system simulator to show the energy benefits
provided by such a design.

• Propose static and dynamic parameters that need to
be considered for scheduling application’s threads.

The paper is organized as follows. We discuss the need of
a new system software for emerging platforms in Section 2
and present our design in Section 3. Section 4 and Sec-
tion 5 discuss the new measurement framework and simula-
tor respectively to show the benefits of such a design. Sec-
tion 6 analyzes the parameters to consider while scheduling



to maximize energy benefits and Section 7 concludes.

2. MOTIVATION
Previous research [13] has shown the power and perfor-

mance benefits of having multiple different-ISA cores on a
single chip. However, such work uses simulations and does
not discuss the kind of system software needed by the plat-
form. Also, the discussion focuses on processor cores and
their microarchitectural differences. However, computing
platforms are designed for a wide variety of target mar-
kets. For instance, power-efficient low-performance servers
are designed with ARM processors, whereas a server ma-
chine based on Intel Xeon or Xeon Phi processors is designed
for high performance. On each platform, along with a pro-
cessor other components like peripherals, memory, storage
etc. are carefully selected to design an ecosystem with a con-
sistent power-performance profile. In [16], two server plat-
forms with different power-performance profiles are paired
to investigate an energy-efficient architecture. The authors
run separate system software on each architecture. When
migrating an application from one server to the other, the
application is terminated on the origin server and re-started
on the destination server; only its persistent data is main-
tained consistent, e.g., the data saved on networked file sys-
tem. This results in either high migration overheads to
checkpoint/restart the application, or limits the approach
to only certain classes of applications that are stateless, i.e.,
without a volatile state.

The lack of an efficient system software solution to en-
compass both heterogeneous chip multiprocessors and server
platforms acts as a limiting factor in harnessing the com-
plete energy efficiency provided by such platforms. The tra-
ditional approach of porting an operating system to a new
platform doesn’t apply to heterogeneous-ISA architectures.
Linux, as an SMP operating system, has been ported to
overlapping-ISA platforms [11], but porting to fully hetero-
geneous-ISA platforms is not possible – the complete ISA
incompatibility requires per-ISA executable code. On the
other hand, running independent operating systems as in [16]
is too restrictive. In this paper, we try to bridge this gap
by exploiting the replicated-kernel OS model and extending
Popcorn Linux [3] on ARM-x86. Compared to other multi-
kernel approaches like [4], Popcorn Linux can run standard
applications without any modification as it is compatible
with Linux.

3. THE SYSTEM SOFTWARE
A replicated-kernel OS design [3] provides an effective so-

lution for heterogeneous-ISA platforms. On such platforms,
a different kernel runs on each ISA. Kernels communicate
using explicit message passing to maintain a single operat-
ing system state despite the ISA differences. This provides a
single operating environment, which also enables application
migration among kernels.

For such an operating system, the applications are com-
piled to transparently run on every architecture in the plat-
form and support migration among different-ISA processors.
A compiler and linker toolchain is provided to create bina-
ries with multiple code sections, one per ISA, all of which
operate on the same address space (fixing the same data
types, alignments, and address space layout).

The architecture of the system software for an ARM and

Figure 1: System software architecture for an ARM-
x86 heterogeneous platform

x86 platform is shown in Figure 1. Such architecture extends
the Popcorn design introduced in [2] to a fully heterogeneous-
ISA platform. Both architectures run an instance of the
Linux kernel natively compiled for each architecture. These
two kernels communicate with each other using explicit mes-
sage passing via the Popcorn Communication Layer. This
layer enables all distributed services between kernels, in-
cluding Popcorn Namespaces (NS) and Popcorn Services,
that create a single operating environment (single system
image). Moreover, each kernel supports the loading of het-
erogeneous binaries. Such application binaries, as depicted
in Figure 1, have multiple code sections (.text) – each com-
piled with architecture-specific optimizations for a particular
ISA. The two key functionalities of Popcorn Linux that have
been extended by our initial prototype are described in the
following.

Task Migration.
The goal of the system software is to provide the applica-

tion developer with the familiar SMP interface on the ARM-
x86 heterogeneous-ISA platform. Therefore, as tasks can
seamlessly migrate among cores in an SMP OS, seamless
task migration between ARM and x86 processors is provided
by the operating system using the task migration service in
Popcorn Linux [2]. The task state is packed into a mes-
sage and sent to the destination ISA where it is correctly
mapped to compensate for the ISA difference. Currently,
migration points in the application code have been inserted
at function boundaries to provide safe places from which
to migrate [2]. Function boundary migration is achieved
by packing the function arguments at a specific address in
global data section in an ISA-independent manner.

Application Execution.
To execute an application, a heterogeneous binary is cre-

ated. Every symbol is aligned at the same virtual address
on both the ARM and x86. Function addresses are also
aligned. The operating system aliases different-ISA code
sections to the same virtual memory range. The memory
consistency protocol and the page replication algorithm of
Popcorn Linux [2] provide a consistent view of an applica-
tion’s address space across kernels. This enables the famil-
iar SMP shared memory interface for application developers,
thereby improving programmability. Further, the migration
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Figure 2: Function level energy profile of NPB IS
and FT benchmarks

of application threads at any machine instruction can be en-
abled by using low-overhead techniques like dynamic binary
translation as shown in [6].

4. ENERGY EFFICIENCY ANALYSIS
In order to estimate the energy efficiency provided by

emerging heterogeneous platforms, we conducted a thorough
evaluation of various classes of workloads from PARSEC [5]
and NPB [1] benchmarks on both ARM and x86 machines
running vanilla Linux (version 3.12). The experiments were
conducted using Intel Xeon E5-1650 v2 (x86 64 ) and Ap-
plied Micro X-Gene 1 (aarch64 ) machines. The same setup
has been used for all the experiments presented in this pa-
per. Only a subset of the results is reported due to space
constraints.

Function Level Profiling.
Experiments were conducted to investigate the energy ben-

efits at the programming language function level. For this
purpose we developed a library to measure the system en-
ergy consumption at a program’s function level granularity.
The library provides a uniform interface across various plat-
forms to measure energy so that the applications need not
be modified for profiling across multiple platforms. On x86
the library uses the PAPI [14] library (version 5.4.1) that
supports measuring the energy consumed using the model
specific register (MSR) Linux driver. However, on ARM
there was no such support available. We developed a kernel
module which can profile the energy consumption by period-
ically monitoring the power sensors through a kernel thread
using the I2C driver interface.

For reliable measurements on each platform, we shutdown
the unused services and ensured that the system does not
run any other application. We selected OpenMP-based ap-
plications whose threads execute homogeneous computations.
We used the gprof [9] utility to selectively choose those
functions which account for significant application execu-
tion time. The selected functions are instrumented using li-
brary calls to gather the energy consumption for every func-
tion call. When an application is run, the library interface
collects the function-level characteristics such as execution
time, call frequency, and the energy and average power con-
sumed.

Figure 2 shows the ratio of ARM-to-x86 for various met-

rics such as performance, energy, power, and energy-delay
product (EDP) for functions of interest across multiple ap-
plications. The points on the energy plot with a value of
less than 1 indicate that ARM consumes less energy for
those functions compared to x86. Furthermore, if the same
functions show a minimum EDP it implies that the energy
savings can be achieved with minimum performance loss if
those functions were migrated to ARM. Since all functions
consume on average less power when running on ARM than
on x86, exploiting ARM helps reducing the overall system
power consumption. If further reduction in the power con-
sumption is needed, it can be achieved by moving those
functions like FT-fft which have an energy ratio closer to
1 on to the ARM side. This ensures power reduction but at
the expense of performance and energy benefits. All other
functions can be executed on x86 itself for improved energy
efficiency.

5. SYSTEM SIMULATION
Although the experimental results show the promising en-

ergy and power benefits of using an ARM-x86 platform, the
proposed system software has overheads that need to be con-
sidered to estimate the overall system benefits. We have
created a system simulator that takes as input the profil-
ing information of an application, such as per-function time
and power consumption, and the system software overheads,
such as thread migration latency and per page memory con-
sistency latency, on both ARM and x86. The simulator is
a user-space program that implements an oracle scheduler,
which supports different scheduling policies including energy
minimization and energy-delay minimization. It has been
implemented as a user-space program.

The simulator provides a comprehensive tool to evaluate
all kinds of platforms: shared-memory cache coherent and
non-cache coherent processors, as well as processors that do
not share memory. To account for the memory consistency
part of system software overhead, we exploit an offline anal-
ysis tool from [2] that collects the number of instances of
such overheads via application profiling. The tool is imple-
mented as an LLVM pass and tracks all memory accesses
within functions while simulating the page coherency proto-
col of Popcorn Linux.

Results.
The simulator generates an optimal schedule by mapping

the functions to a suitable architecture as determined by a
policy. The graphs in Figure 3 and Figure 4 show the en-
ergy benefits of the heterogeneous ARM-x86 platform (with-
out shared memory) with respect to homogeneous ISA ex-
ecution for IS and FT applications (class C) using energy
minimization and energy-delay minimization policies respec-
tively. The energy minimization policy results in an energy
saving of 22.4% with a speed up of 68.7% for FT on the
proposed system software architecture and platform com-
pared to ARM and a 5.3% energy saving with a perfor-
mance loss of 27.3% compared to x86. In the case of the
energy-delay policy FT achieves an energy saving of 21%
with a speed up of 70% compared to ARM and 3.7% energy
savings with a performance loss of 21.9% compared to x86.
Note that for an application like IS, though there are energy
savings, the migration can result in a loss of performance.
However, when simulating an ARM-x86 setup with shared
memory, these performance penalties are almost canceled.
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Figure 3: Simulation: Energy Minimization policy
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Figure 4: Simulation: Energy-Delay Minimization
policy

The IS Time het value for energy minimization falls below
1, while the FT Time het value becomes lower than FT -
Time x86 for EDP minimization.

6. DISCUSSION
In our heterogeneous setup without shared memory, In-

tel Xeon E5-1650 typically consumes 60− 75W while APM
X-Gene 1 consumes around 15 − 22W. An application like
Ferret, from the PARSEC benchmarks [5], which has a huge
working set and an irregular memory access pattern turns
out to be more energy efficient when running on ARM. This
is because the x86 processor consumes more power compared
to ARM even with features like dynamic voltage and fre-
quency scaling (DVFS) enabled during the memory bound
phase of an application. Energy efficiency of x86 mainly
depends on how fast it can execute the workload. Since
an irregular memory access pattern stretches the execution
time, the benefits of a faster execution are lost, thus mak-
ing x86 less energy efficient. The performance is bounded
by the memory access latency. Migrating such applications
to ARM reduces the overall energy consumption. We argue
that such migrations not only improve the energy efficiency
of that workload but also improve the energy efficiency of
the co-running applications which are memory intensive and
have a regular memory access pattern. This is due to the fact
that the co-running applications will experience less cache
interference and also can use spare CPU cycles left behind
by the migrated application.

Roofline.
To strengthen our hypothesis and have a better picture

of the performance gap between ARM and x86 processors
at various degrees of memory intensity, we evaluated both
platforms using the Roofline model [15]. Figure 5 shows
the maximum single core performance in GFLOPS/s achiev-
able on each platform at different degrees of operational in-
tensity [15]. A similar graph has been obtained with an
integer-only compute kernel (a new compute kernel was im-
plemented for such evaluation). The performance gap be-
tween ARM and x86 is wider in compute bound phases and
becomes narrower as an application starts becoming more
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Figure 5: The Roofline model [15] for the selected
ARM and x86 platforms

memory intensive. At low operational intensity values, such
as 0.1 in Figure 5, it is more energy efficient to move the
application to ARM as the performance on x86 has reduced
thereby increasing the energy consumed. This confirms our
previous argument that it is energy efficient to run memory-
bound phases on ARM and compute-bound phases on x86.
Thus, for a memory intensive application with a regular
memory access pattern, it will still be energy efficient to
run the application on x86. Note that performance counters
can be used to monitor cache misses, which can then be used
to determine whether an application phase has a regular or
an irregular memory access pattern.

Another factor that needs to be considered is the CPU
cycles available on each CPU for an application. When
multiple applications are co-running on the same system,
the load increases thereby reducing the share of CPU cycles
for each application. The performance achieved with the
roofline evaluation assumes that all of a CPU’s cycles are
available for a single application. To account for multiple
applications running on the system we can scale the perfor-
mance value of each application based on its current CPU
cycle share.

Scheduling.
With the above observations, we argue that an effective

global scheduler that considers power and performance should
also monitor per-thread memory traffic and can be designed
with minimal runtime complexity. We propose that each
processor in the platform maintains a set of its characteris-
tic performance at various degree of operational intensity, for
example obtained via profiling at boot-time. Such profiles
are known by all kernels. Moreover at runtime, each kernel
periodically updates all the others about its load. Mem-
ory access pattern of the application will be estimated using
performance counters. With these information the scheduler
makes workload migration decisions between processors to
improve energy efficiency.

7. CONCLUSION
In this paper, we discussed the inability of present soft-

ware architectures to exploit the energy efficiency provided
by heterogeneous systems with different power performance



profiles. We then proposed a new system software based on
replicated-kernel OS design. Energy benefits provided by
our approach is demonstrated by constructing a simulator
which shows up to 22.4% energy savings and 70% speedup
compared to ARM. Through a detailed application analysis
and system evaluation, we proposed a simple and effective
workload scheduling approach which can improve energy ef-
ficiency in such platforms.
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