The Case for Resurrecting Distributed Virtual
Shared Memory

B M Saif Ansary, Masters Student, Virginia Tech, bmsaif86@vt.edu
Advisor: Binoy Ravindran, Virginia Tech, binoy@vt.edu

Computing platforms are becoming increasingly parallel and heterogeneous,
moving towards combinations of multiple CPUs and multiple accelerators that
are increasingly coupled. The vast amount of applications written within the
shared memory programming model cannot run as-is on these architectures. We
propose to design an operating system and a set of compiler tools that enable
shared memory applications to run seamlessly on such heterogeneous platforms.
Hereafter we discuss the mechanisms we foreseen should be implemented in the
operating system.

Nowadays single processor execution speed has reached a plateau and the
parallelism per chip is constrained by power. Moreover inter-chip communi-
cation overhead represents scalability problem [1]. Therefore, new techniques
are being explored by the architecture community to continue achieving faster
computations: heterogeneity, via the integration of multi-core and many-core
accelerators [2], where many-core accelerators are OS-capable; faster intercon-
nects, via photonics technology [3] have emerged which can mitigate inherent
communication bottlenecks between systems. Therefore, we foresee the neces-
sity for the system software to support and exploit such heterogeneity, and the
opportunity, due to new and faster interconnects, to resurrect distributed virtual
shared memory.

Multi-threaded programming is a common practice. However, on a het-
erogeneous platform, different code sections of a program can be made to run
faster if the computational patterns are carefully identified and mapped onto the
best processor. For example, serial code can be mapped on a general purpose
processor while SPMD can run on a special purpose accelerator (e.g., GPU).
To exploit heterogeneity, languages such as CUDA, OpenCL have been devel-
oped. However, we argue that such languages hinder programmability, in fact
programmers have to adopt a new programming model, different from the fa-
miliar shared memory. That requires performing memory transfers explicitly,
specifying the compute kernel etc. which greatly increase the complexity of
programming.

We propose system software that alleviates this extra effort in program-
ming, exploits the architecture heterogeneity, while providing shared memory
abstraction to the programmer. Such a software requires an operating system



that provides distributed shared memory and strives to hide the underlying
heterogeneity [4]; enabling tasks to migrate in the heterogeneous system.We be-
lieve that deploying distributed shared memory (DSM) on faster interconnects
will exhibit low overheads, therefore it is worth exploring this solution, inves-
tigating inter-processor islands messaging. Our contribution is twofold. First
we introduce a low latency, high throughput, inter-processor island messaging
framework. Secondly a dynamic page-coherency protocol that provides shared
memory abstraction amongst individual OS capable processor island.

Our target system is based on multicore CPUs (x86) and OS-capable ac-
celerator cards, such as Intel Xeon Phi. Each processor island has different
advantages over the other: Xeon Phi is better in vector processing, the host
CPU is better in general data processing. Each island is an independent sys-
tem connected through PCle. The host CPU and Xeon Phi are individually
cache-coherent shared memory islands, we consider them as different nodes.
Each other memory can be accessed in different modes, by Remote memory ac-
cess (RMA) and by Direct Memory Access (DMA), therefore representing two
different memory configurations. Previous work, such as COSH [2], requires
the programmers to explicitly manage this memory diversity. Our mechanism
provides transparency by implementing DSM.

Our prototype implements a page coherency protocol inspired by MESI and
a further page ownership protocol. The node on which the page is originally
opened is the owner of that page. When threads migrate to different nodes, the
pages are sent on demand. The remote node queries the owner node for the page.
The ownership is transferred to the node which makes the latest modification.
The ownership transfer distributes the workload of managing the page thus
allowing the protocol to scale. We observe RMA is expensive compared to
local access so for read-only pages we use DMA copy instead of RMA. This
hybrid approach allows better performance compared to RMA only. We keep the
pages consistent by adopting techniques used in distributed memory, through
exchange of messages. The protocol is configurable for level of consistency
(strict, weak). We implemented the system and ran NAS Parallel Benchmark
(NPB) extensively, and found the performance numbers are better than the
native execution in some cases.Figure 1 shows the comparison between native
Xeon Phi vs popcorn performance.

For Xeon Xeon Phi setup DMA based copy approach out-performed RMA
approach on all cases, due to high latency of PCle bus, therefore we used the first
technique for our evaluations. Evaluations are done with three benchmarks, In-
teger Sort(IS) Embarrassingly Parallel(EP) and Conjugate Gradient(CG). IS is
random memory access , EP has no synchronizations and CG is irregular mem-
ory access with inter-thread communication. All of them stress the messaging
and page-coherency protocols.

We intend to present our contributions in poster using graphic representation
of the system architecture. We also plan to present further benchmark results
that show how different solutions scales based on the application memory access
pattern.



NafiveXeonPhi s Popcorn #esss NativeXeonPhi s Popcom Eas NativeXeonPhi s Popcor #esss

12 110 350

10 300

80 250

time (sec)
time (sec)
time (sec)

. |

ok Ill L
0 0

4 > S > P 4 N
v@‘?v“”é’@\@”‘o”o‘djb

0
S S I A
LR G R R PSS S

(a) NPB IS (b) NPB EP (c) NPB CG

Figure 1: Comparison between different NPB benchmarks on Xeon Phi native
vs Popcorn on different number of threads(57,114,228) and data size(A,B,C)

References

[1] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Re-
becca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schpbach, and Akhilesh
Singhania The Multikernel: A new OS architecture for scalable multicore
systems SOSP 2009.

[2] Andrew Baumann, Chris Hawblitzel, Kornilios Kourtis, Tim Harris, Timothy
Roscoe Cosh: clear OS data sharing in an incoherent world USENIX TRIOS
2014.

[3] Heck M.J.R, Hui-Wen Chen, A.W. Fang Hybrid Silicon Photonics for Optical
Interconnects IEEE Journal of Selected Topics in Quantum Electronics, 2010

[4] Antonio Barbalace, Alastair Murray, Robert Lyerly and Binoy Ravindran
Towards Operating System Support for Heterogeneous-ISA Platforms 4th
Workshop on Systems for Future Multicore Architectures, 2014



