

Multi-Variant Execution atop a Decomposed Hypervisor on Emerging Heterogeneous-ISA Multicore

Pierre Olivier, Antonio Barbalace, Binoy Ravindran

Systems Software Research Group, ECE Department, Virginia Tech, USA {polivier, antoniob, binoy}@vt.edu

Goal: Improve Software Security in the Cloud

- Major concern in a multi-tenant environment
- Multi-variant execution [1] (MVX) protects regular processes against control flow diversion attacks leading to arbitrary code execution (e.g., buffer overflows)
- Proposition: adapt MVX to virtualization for the Xen hypervisor on heterogeneous multicores
- MVX for virtual machines and hypervisor components
- New type of variance: ISA difference

Xen

- Popular in cloud environments (Amazon, Rackspace, etc.)
- Bare-metal: isolation [2]
- Unikernels [3]: security
 oriented, single purpose
 applications running as guest
 VMs

Multi-Variant Execution [1]

- Instances (variants) of the same program run in parallel and in lockstep mode
- Abstracted by a monitor distributing inputs, and comparing outputs
- Variants are semantically equivalent and structurally different: They react differently in the case of an attack (e.g., reverse stack grow)

Broken-Hype: Decomposed Virtualization Services

- Xen: Hypervisor + Privileged VM (Dom0)
- Complex for MVX in their current state
- Decompose virtualization layer into independent services → MVX for this layer:
 - VM management, VM boot control, Xenstore, drivers, etc.
- Small exokernel with min. functionalities:
 - Messaging layer for communication, Interaction between components: message
 - Supports crossing ISA boundaries
 - TCB: exokernel + small hypervisor

Guest Domo service service OS layer: GGGGGGGGGGGSSS Quest exokernel (Message-passing) Message-passing

Multi-Variant Execution of Virtualization Components

- Granularity of checks: message
- → Hypercalls, interrupts, and I/O
- Monitor intercepts all messages sent / received by entities in MVX
- ISAs difference: more variance & diversity
- Inconsistencies / false positives:
 - Non-immutable results, Interrupts
 distribution → monitor intervention
 - Scheduling: VCPUs and Multi-threading inside a guest → **deterministic multi- threading**, *replicatable* **determinism** [4]

Conclusion

- Proposal: adapt MVX to the virtualization world: MVX for guest VMs and for the virtualization layer itself (Hypervisor and control VM)
- Broken-Hype, decomposed virtualization layer design: isolated components, minimal exokernel, message passing communication
- New type of variance: *ISA difference* \rightarrow strong variance and diversity

References

- [1] B. Cox and E. David "N-variant systems: a secretless framework for security through diversity." Usenix Security. Vol. 6. 2006.
- [2] P. Colp et al. "Breaking up is hard to do: security and functionality in a commodity byparvisor." ACM SOSP 2011
- in a commodity hypervisor." ACM SOSP, 2011.
 [3] A. Madhavapeddy et al. "Unikernels: Library operating systems for the cloud." ACM SIGPLAN Notices. Vol. 48. No. 4. ACM, 2013.
- [4] S. Volckaert et al. "Replicatable determinism for parallel programs." 2015.