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ABSTRACT

Popcorn is a Linux based replicated-kernel Operating Sys-
tem (OS). Popcorn was conceived as a research OS for a
wide class of future heterogeneous-ISA hardware. Because
of the novelty of such hardware, in which diverse OS-capable
CPUs are glued together, it is not clear what level of mem-
ory sharing will be provided across these CPUs. In this
paper we consider a setup in which diverse CPUs do not
share memory. We addressed the problem of providing a
coherent replicated process address space amongst different
kernels, running on those CPUs, by proposing a new page
coherency protocol. We deploy this protocol in Popcorn OS
while adding additional functionalities to the Linux kernel
to support inter-kernel thread migration and coordination.
We tested and evaluated a prototype version of this work
in an emulated environment; results show that the proposed
page coherency protocol is effective and the implementation
adheres to the model.

Categories and Subject Descriptors

D.4.1 [Operating Systems]: Process Management—Mul-
tiprocessing/multiprogramming/multitasking, Threads; D.4.2
[Operating Systems]: Storage Management— Virtual mem-
ory; D.4.7 [Operating Systems]: Organization and De-
sign—Distributed systems

General Terms
Algorithms, Experimentation

Keywords
Software Page Coherency, Replicated-kernel, Operating Sys-
tem, Thread Migration, Linux

1. INTRODUCTION

Given the emerging trends in the computer community to
increase parallelism and integrate ISA-diverse cores onto the
same platform, and more recently onto the same chip (i.e.

AMD Fusion [3], Intel Sandy Bridge [19]), we foresee the in-
tegration of diverse OS-capable cores on-die. Different OS-
capable, overlapping-ISA; cores integrated on the same chip
already exist: the ARM big.LITTLE architecture [17] inte-
grates both power hungry (Cortex-A15) and power efficient
(Cortex-AT) processors onto a single die. The goal of the
big. LITTLE architecture is to provide a power efficient plat-
form while maintaining high performance. The reasons to
integrate ISA-heterogeneous cores onto the same platform or
chip are numerous: load balancing, power efficiency, mem-
ory and device locality, faster execution, expanded mem-
ory space, greater device count, etc. Furthermore, although
speculative, GPUs may become more OS-capable in the fu-
ture (for example, the compute units of the Cell processor
[8] are able to run a micro kernel ).

Popcorn is a research OS based on the replicated-kernel
model. In this model the OS consists of different kernel in-
stances that are running in parallel on the same hardware;
kernel instances communicate and cooperatively provide the
illusion of a single system image (SSI) [9] to the running ap-
plications. The replicated-kernel model is the perfect fit in
an ISA-heterogeneous setup; each kernel is compiled for an
ISA-specific processor but architecture-agnostic communica-
tion mechanisms are used to allow the kernels to provide a
single operating environment to the application (despite the
ISA difference). Applications can be migrated on each pro-
cessor in the system exploiting the unique features of each
ISA (power efficiency, local peripherals, SIMD instructions,
etc.). We currently do not address cross-ISA execution is-
sues; we refer to the work of M. DeVujist et al. [5] instead.
Popcorn OS is based on Linux, and is publicly available at
WWW.popcornlinux.org.

1.1 Supporting Emerging Platforms

While the industry focus in recent years was to increase the
number of computational units per chip, scientists became
skeptical that cache coherency protocols would scale [1].
Recently, however, researchers have argued that cache co-
herency will be applicable to future many-core architectures
[11]. Because of these contradictory trends, the structure of
the memory architecture of future heterogeneous-ISA plat-
forms is not clear. In a heterogeneous-ISA platform differ-
ent cores can share memory, which can be hardware cache-
coherent (e.g., big. LITTLE) or non-cache-coherent (e.g., SCC
[20]); alternatively, cores may not share any memory (e.g.,
an Intel x86 server motherboard with a PCle-connected Xeon
Phi [7]). Platform inter- and intra- chip hardware messag-



ing can be adopted as a form of communication instead of
shared memory, as previously envisioned [1].

Popcorn’s goal is to transparently run applications, tradi-
tionally designed for SMP systems, on ISA-heterogeneous
platforms, despite the underlying memory architecture. Due
to the fact that a vast majority of applications were imple-
mented by adhering to the SMP model, they do not have to
be rewritten by using another programming paradigm, e.g.
MPI or PGAS, when ported to a new platform where Pop-
corn is running. Mechanisms to support different memory
architectures must be provided in Popcorn OS. In [14] we
proposed sharing physical pages between kernels in a cache
coherent shared memory setup, while coherently updating
the virtual to physical mappings across kernels. We also
proposed sharing the physical pages by adding an owner-
ship rule and a cache flushing semantic in non-cache coher-
ent shared memory configurations. In non-shared memory
setups we propose to implement page replication per kernel.

1.2 Contributions

Although there are no fully heterogeneous-ISA platforms
with shared memory available today (exceptions exist in the
embedded market [18], although they have limitations), non-
shared memory platforms can easily be built with commod-
ity hardware. Several non-shared memory systems can be
built from an x86 server by plugging PCle-connected accel-
erators, intelligent network interface cards, disk controllers,
etc. (e.g. Intel Xeon Phi, Tilera TILEncore, etc.). In this
article, we present a new page coherency protocol which ad-
dresses the problem of how to keep different replicas of a
process’ address space coherent amongst different kernels
running on processors that do not share memory. Our ad-
dress space replication protocol addresses coherency at page
granularity while considering the problem of replication at
the virtual memory area (VMA) level (a group of pages with
similar protection) to reduce the number of the pages that
have to be kept coherent (e.g., read only areas can be loaded
locally by each kernel). The novelty of the proposed proto-
col, compared to the state of the art, including MSI [13],
IVY [10] and its optimizations in vNUMA [4], lies in its dis-
tributed design, instead of a centralized one. We believe this
is a better fit for the hardware we are targeting.

We design and implement this protocol in Popcorn OS. De-
spite Popcorn running on real hardware, we tested and con-
ducted an initial evaluation of the protocol in a multicore
x86 emulation environment (QEMU). In addition to the al-
gorithmic and technical details of the proposed protocol, in
this paper we discuss the problems we faced while imple-
menting it in the Linux memory subsystem. Furthermore
we present the functionalities that were added to the Linux
kernel in order to support thread migration, including a new
signal, SIGFORK.

The article is organized as follows: Section 2 introduces re-
lated work, and in Section 3 we give a brief overview of
Popcorn OS while describing the messaging subsystem and
the thread migration mechanism. In Section 4 we present
our page coherency protocol while in Section 5 implemen-
tation details are given. We present an initial evaluation in
Section 6 and we conclude in Section 7.

2. RELATED WORK

A large body of work exists in the literature about hardware
implementations of protocols to maintain cache coherency
in multiprocessor environments. These protocols, including
MSI, MESI, MOESI, have a long history [16] and are still
evolving in order to scale to thousands of processors [11].

Our work addresses the problem of maintaining coherent
process’ address space replicas amongst different kernels that
do not share memory within a software implementation.

K. Li and P. Hudak in [10] summarize their work on IVY,
a distributed shared memory (DSM) setup; similarly to our
setup they consider a parallel program as a set of threads.
However, their work was developed for a network of worksta-
tions. Because of this, they made different implementation
choices that we believe can be optimized for our environ-
ment (see Section 4) which inspired us to design a new al-
gorithm. B. Fleisch and G. Popek in [6] implemented their
DSM system in the OS kernel by using the architecture’s
page granularity. Similarly, our protocol is implemented in
the OS kernel and maintains coherency at the page level.

M. Chapman and G. Heiser in [4] describe vYNUMA, in which
they propose several optimizations over the IVY protocol in

order to build a virtual machine that spans different homogeneous-

ISA SMP machines. Their work is different from ours in that
we are providing transparency at the application level and
not to the OS itself; additionally their approach cannot scale
to heterogeneous-ISA hardware. A. Lebre et al. in [9] uses
a variant of IVY to maintain a coherent distributed object
in their kDDM module at the base of Kerrighed [9] (a Linux
based cluster environment). Again this cannot scale to het-
erogeneous platforms. Furthermore, Popcorn is similar to
single system image (SSI) extensions to operating systems
that are designed for cluster environments, like Kerrighed;
however existent cluster extensions only provide process mi-
gration.

To the best of our knowledge, only Agora [2] and Mermaid
[12] addressed the problem of DSM in heterogeneous-ISA se-
tups. Their approach to the problem is at a higher software
layer where memory is still shared in pages but each page
can only contain a single type of data with a specific inter-
face. We aim to provide a transparent DSM-like system to
the application.

Barrelfish multikernel OS [1] is the most advanced replicated-
kernel OS. It was developed as a solution for homogeneous
and heterogeneous ISA platforms. By date, to the best
of our knowledge, Barrelfish does not provide support for
replicated process address space. Furthermore, despite their
mention of thread migration in [1], we didn’t find any im-
plementation in their source code.

3. POPCORN REPLICATED-KERNEL OS

Popcorn is an OS made up of several Linux kernels. Each
kernel runs on a single CPU core or on a group of cores with
hardware cache-coherent shared memory. As mentioned be-
fore, Popcorn aims to work across multiple architectures; dif-
ferent ISA cores may share memory or may not share mem-
ory. The goal of Popcorn is to provide the illusion of a sin-
gle operating system amongst kernels to the applications re-
gardless of the architecture. This work addresses non shared
memory configurations. Therefore, on a heterogeneous-ISA
platform, Popcorn will not require shared memory applica-
tions to be rewritten for non shared memory because the
operating system will transparently handle diversity in the
hardware (refer to Figure 1). In the following subsections
we introduce the basic building blocks that are necessary to
make this happen: the messaging layer and thread migra-
tion. These must be paired with the page coherency protocol
in order to emulate the shared memory model expected by
applications.

3.1 Messaging Layer
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Figure 1: On a non-shared memory multicomputer,
applications on different kernels must communi-
cate explicitly (e.g., MPI) when a traditional OS
is adopted. With a Replicated-kernel OS, SMP ap-
plication can run without modifications instead.

In a platform in which ISA-diverse cores do not have ac-
cess to any shared memory, a form of messaging must be
exploited in order to make kernels communicate. In our
Popcorn prototype which runs on multicore x86 hardware,
we provide a software messaging layer on top of shared mem-
ory that simulates this setup. The messaging is built upon a
combination of shared memory, buffering, and Inter Process
Interrupts (IPI) to notify a remote kernel that a message
has been delivered to it. Because of the not negligible dis-
patching latency of IPIs, we use a mixture of interrupts and
polling in order to reduce the number of IPIs that are sent,
thus increasing the overall throughput. Because of the fact
that the multicore x86 AMD hardware, on which we are cur-
rently running Popcorn, does not support the x2APIC stan-
dard, we are not able to send IPIs in broadcast. Therefore,
the messaging layer provides point-to-point communication
only. This turns out to be a source of overheads which we
considered in the design of the protocol (see Section 4).

3.2 Process and Thread Migration

In order to provide a process with the ability to exploit dif-
ferent hardware resources (like CPUs, peripherals, etc.) in
parallel, on different cores, we developed inter-kernel pro-
cess and thread migration in Popcorn. In the replicated-
kernel design the computational model is different from the
classical CPU-GPU, master-slave, approach. Because dif-
ferent OS-capable ISA-diverse cores will lie side-by-side on
the same chip, we chose a computational model in which
each core is a peer. This model extends the classic SMP
multithreaded paradigm to heterogeneous-ISAs.

The focus of this article is on thread migration. Process mi-
gration amongst kernels does not require any address space
coherency. For process migration, the entire process’ address
space is continuously migrated together with all threads
making up the process; there is no replication, and hence
no coherency is required. Thread migration per-se required
a lot of engineering. We implemented thread migration atop
the Popcorn process migration mechanism. Whenever sev-
eral threads of a process migrate to a different kernel, on the
kernel in which they are migrated, they must still be part of
the same process (thread group in Linux). We implemented
a mechanism that handles this scenario. When a thread is
moved to a kernel it first searches for any other thread of
the same thread group that was previously migrated to that
kernel. If it finds a thread of the same thread group, it joins
that thread group. When a process migrates to a different
kernel, we create a new process, with parent init, that will
mutate into the migrating process. In order to allow a mi-
grating thread to join its thread group on a remote kernel
we introduced a new signal, SIGFORK, that forces one of the

threads of the thread group to clone itself and accommodate
the new incoming thread.

Our process and thread migration mechanisms are running
on homogeneous x86 multicore hardware, as we currently do
not consider problems introduced by cross-ISA execution.
Scheduling policies on heterogeneous-ISA platforms are out
of the scope of this article.

4. PAGE COHERENCY PROTOCOL

We modelled our page coherency protocol over the MSI
(Modified, Shared, Invalid) cache coherence protocol [13],
Figure 2 shows our set of stable states. Similarly to hardware
cache coherence protocols, our protocol guarantees strict co-
herence of the memory view to threads in a process. We
maintain the same naming convention of stable states as in
MSI, but a state is associated to a copy of a page (not a cache
line) that belongs to a process virtual address space (instead
of a chunk of physical memory). Furthermore we base our
coherency protocol on the same single-writer-multiple-reader
(SWMR) invariant [15], different other invariants are also
considered.

A page in the Modified state allows the thread to perform
reads and writes on the local version of the page. All the
other copies in the system must be in the Invalid state. A
page in the Shared state has an up-to-date version of the
data; it can coexist in the system with other Shared or In-
valid copies. In this state, thread reads can be performed
on the local version of the page. A copy in the Invalid state
is a non-valid version of the data, the up-to-date version has
to be fetched from the system before any thread operation
can continue.

Hardware cache coherency (snooping) protocols may rely on
implicit ordering in accessing the bus to provide atomic op-
erations across processors. Atomic message broadcasts may
also be supported. Similarly, IVY assumes that all broadcast
messages are atomic [10]. Hence an Invalid message atom-
ically invalidates all the copies present in the system. Pop-
corn’s messaging layer does not provide atomic operations
or message broadcasts (see Section 3). We do not implement
those functionalities in Popcorn but we create a coherency
protocol that accommodates for their absence. This choice
was motivated by the fact that a further software layer, be-
tween the messaging layer, and the coherency protocol, will
increase the overhead in the application execution.
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Figure 2: Protocol stable states (derived from MSI).
Dashed lines represent transitions triggered by ap-
plication code (memory accesses). Straight lines
represent transitions triggered by remote messages.
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4.1 Wait States

Application threads running on Popcorn trigger read and
write operations when pages are in stable states; such op-
erations are intercepted and handled using our algorithm
by the local kernel. Additional transient states are added
to the stable ones to model inter-kernel communications.
When a message is sent, it takes a not negligible amount of
time before it is delivered to the receiver. The receiver may
send back a response to the sender, which in turn will not
happen instantaneously. The communication is modelled
through wait states, in which the page copy should transit
until it receives all the required answers. Application read
and write could not be triggered on those states, because the
data that the page copy holds is not valid. Therefore any
read or write is delayed until the page copy reaches one of
the stable states. The messages are queued on handlers in
kernel space that are different from the ones that intercept
the application’s read or write operations (fault handlers).
When all the answers related to a sent message reach the ker-
nel, the page copy does not necessarily exit from the wait
state immediately, but it could see a delay caused by the
time needed to notify its handler.

4.2 Protocol Actions

Reads triggered on the Shared or the Modified states can
be performed locally. When a read is triggered on the In-
valid state instead, a Fetch message should be broadcast to
the system. While waiting for the answers, the page copy
transits in the Invalid Read state (refer to Figure 3). The
other page copies in the system, upon receiving the Fetch
message, should answer either with a Copy_Void message,
i.e. such kernel does not have an updated copy of the data;
or with a Copy message, that piggy-backs a valid copy of
the data. An invariant of our algorithm is that at each time
there either exists at least one page copy that will answer to
the Fetch message, from a Shared state, or there exists a sin-
gle page copy that will answer from a Modified state. This
guarantees that at least one answer to the Fetch message
contains an up-to-date copy of the data. After collecting all
the answers, the page copy on which the read was performed
can change its state to Shared. When a page copy in the
Modified state answers to a Fetch with a Copy message, it
changes its state to Shared.

Write operations can be performed locally only on kernels
that own a page copy in Modified state. If the page is in
an Invalid state, the most recent version of the data should
be acquired before the write can occur. In this case we
force a read action before the actual application write ac-

tion. This implies that the state of the local version will
change to Shared before the write will be processed. When
a write occurs while the page is in Shared state, that kernel
has to broadcast an Invalid message in the system. While
waiting for all the answers, the page copy transits on a wait
state, called Writing. To move from Writing to Modified
state an acknowledge message from each kernel in the sys-
tem caching a copy of that page must be received (refer to
Figure 3). When a page copy in Shared state receives an
Invalid message, its local data is no longer up-to-date so its
state has to be changed to Invalid.

4.3 Resolving Concurrent Writes

In order to implement the single writer part of the SWMR
invariant, at most one page copy in the Modified state can
exist, at any time, in the system. If it exists it cannot coexist
with Shared copies. When concurrent writes are triggered
on more than one copy, only one of them should exit from
the Writing state and reach the Modified one. The other
copies should retry the write (App_Write).

In order to select which of those concurrent writers will
reach the Modified state, we introduced a distributed voting
scheme. When each page copy receives the Invalid mes-
sage, it can vote (answer) with an Ack message or with a
Nack message. Assuming that this distinction has been in-
troduced to handle concurrent writes, only the copies in the
Writing state will answer to an Invalid message with a Nack.
Only the page copy that will receive all Ack messages will
switch state to Modified, while the others have to perform
the write again as they have an unsuitable copy.

In the Writing state time stamps are used to compute the
answer to an Invalid message. When a write is triggered in
the Shared state, the current local time is recorded during
the transition to Writing. This time stamp will never change
while in the Writing state, and it will be reset only when the
page copy arrives in the Modified state. The Invalid message
piggy-backs this time stamp. When an Invalid message is
received, if the current state is Writing, the local time stamp
is compared with the one in the message. If the time stamp
in the message is greater than the local time stamp, then
a Nack is sent. On the other hand, if these are equal we
compare the kernel index. If the index of the receiving kernel
is smaller than the index of the sender kernel, then a Nack is
sent; otherwise an Ack. These two rules guarantee that only
one kernel in the group of the concurrent writers will receive
all Ack messages. Indeed only one will have the smaller
time stamp if compared to the ones in the Invalid messages,
otherwise if there are equal time stamps, just one will have
the smaller index. In our target system there is no global
clock, however each kernel has a monotonically increasing
clock. This may imply that if a kernel starts a write at
time ¢1 and another one starts a write in a time t2 > ¢1,
the time stamp of the first kernel can be greater than the
one of the second kernel. Because of that, the first kernel
can be forced to retry the write. Once a write is repeated,
the time stamp does not change. Due to the monotonically
increasing clocks, this time stamp will become the smaller
in the system eventually, and the page copy will reach the
Modified state.

4.4 Expansion of the Writing State

To model the behavior described above, the Writing state is
decomposed in three different sub-states: Writing Pend 1,
Writing Pend 2 and Writing Read (see Figure 4). When a
write is triggered on a Shared copy, the page copy transits in
Writing Pend 1. If it receives all Ack messages, then it can
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Figure 4: Expansion of the Writing state in Writing
Pend 1, Writing Pend 2 and Writing Read.

switch state to Modified. On the other hand, if it receives
a Nack it changes state to Writing Pend 2. The role of the
state Writing Pend 2 is to collect all the remaining answers
to the Invalids previously sent. The page copies that are in
Writing Pend 2 are the loser page copies, and when all the
answers have arrived, they should fetch the new value of the
data. They switch state to Writing Read and they broadcast
a Fetch message. At least one page copy will answer with a
Copy message, and when all the answers will be collected,
the loser page copies will try to write again by broadcasting
an Invalid message and changing state to Writing Pend 1.
Page copies will loop in this cycle until their time stamp
becomes the smaller in the system, and after a finite number
of retries they will succeed.

4.5 Expansion of the Reading States

When a page copy is not trying to write and it receives
an Invalid message, it has to answer to the sender with an
acknowledge message and discard its local data because it is
no longer up-to-date. Whenever such a page will be accessed
again for a read, a valid copy must be gathered from the
system by sending a Fetch message. An Invalid message
during these states does not entail a loss of information on
that data page.

However, if an Invalid message is received while in Invalid
Read state, this possibly means that the collecting Copy
messages piggy-back a value of the data that could have been
invalidated by that same write in the sender kernels. The
value that copies in Invalid Read states are going to replace
can be potentially invalid. According to this scenario, when
an Invalid is received in that state the Fetch message must
be sent again, after all the answers have been received. To
properly model this transition, Invalid Read is decomposed
in two further sub-states: Invalid Read 1 and Invalid Read
2 (Figure 5). This can potentially lead to an infinite loop
of read when the page copy is in Invalid Read. Indeed, in
Invalid Read only Ack can be sent as an answer to an Invalid
message. If iterated writes are performed on the other page
copies, iterated Invalid messages could be received in the
Invalid Read state before all the valid answers will reach the
requestor.

4.6 Fetch and Fetch_Write Messages

The algorithm has to guarantee that for each Fetch mes-
sage at least one page copy in the system will answer with

Copy_Msg or Copy_Msg or
Copy_Void_Msg / Copy_Void_Msg /
i+ it

i i
‘ =M /i:= 0, A
Broadcast:
Invalid Fetch Msg Invalid

Invalid_Msg
Ack_Msg

Invalid_Msg /
Ack_Msg

App_Read or App_Write /
Broadcast: Fetch_Msg, i= 0

Figure 5: Expansion of Invalid Read state into In-
valid Read 1 and Invalid Read 2.

a Copy message. It can happen that on all the page copies
in the Shared state in the system, a write is triggered simul-
taneously. In this case, if a read is performed on another
page copy in an Invalid state, these copies may answer with
a Copy_Void, violating the invariant. Such a scenario may
happen when the Fetch messages are received by the copies
in the Writing state, before these will end up electing a
writer. If a Fetch message is received in a Writing state,
the answer must be delayed until the write is ended and the
state becomes Modified. A delay in the answer guarantees
that the elected page copy will answer with a Copy message
when it arrives in the Modified state.

A non-elected page copy will retry to fetch an updated copy
from the system. If the answers to these fetches are delayed
while arriving in the Modified state, and if more than one
concurrent page copy should retry the write, they will not
be able to answer each other’s respective fetches. In order
to enable them to proceed, a new message has been intro-
duced; to distinguish it from the Fetch message, we call it
the Fetch_Write message. When fetching the data as a con-
sequence of a write retry, Fetch_Write is sent. The semantic
is the same of the Fetch message, but in the state Writing
Read the answer is not delayed.

4.7 Concurrent Writes Oddities

Invalid Messages Handling. While electing a writer, not
all concurrent page copies exit the electing phase at the same
moment. When messages that are part of a previous elec-
tion phase, reach a page copy after it has ended that phase,
erroneous behaviors can manifest with the illustrated proto-
col.

When a page copy is in the Modified state no Invalid mes-
sages should be received because all the other page copies
should be in the Invalid state, and should fetch the data
before trying to write. However, when a page copy receives
all the Acks to its request to write, it does not mean that it
has also received all the Invalid messages from the concur-
rent writers. Hence Invalid messages can be received after
a page copy has switched to the Modified state. To handle
this possibility we decided to answer to Invalid messages
from a Modified state, but with Nack messages, that will be
delivered to loser page copies.

Rounds. Another problem related to residual messages, arises
when loser page copies try to fetch the most recent data con-
tent. The page copy in the Modified state is the only copy
in the system that has the current valid data of a page.
When all the concurrent page copies that lost the attempt
to write are in the status Writing Read, they all expect a
Copy message from the one in the Modified state. After
the first Fetch, the page copy in Modified becomes Shared
and starts to answer from that state. Before receiving all



the requests, however, one of the page copies, to which it
has already answered, can change status to Writing Pend 1,
and consequently send an Invalid message. The page copy
in Modified state is obligated to change its state to Invalid
before being able to diffuse the valid data content to all the
concurrent page copies.

To solve this problem, a stricter form of coordination is in-
troduced by defining rounds. Locally, rounds start when an
Invalid message is sent. To know how many page copies are
concurrently trying to write, when an Ack or Nack message
is sent, a flag is set if the page copy is in a Writing states.
When all the answers to an Invalid message are collected,
the copy knows how many concurrent writers were in that
round. If that page copy is the elected one, when in Modified
state it will not answer to any Fetch or Fetch_Write mes-
sage until all the concurrent page copies in the round, that
elected it as the writer, have sent a request for data to it.
This guarantees that the page copy in Modified state sends
a Copy message to all the concurrent writers while they are
in the Writing Read state. If the page copy is a loser one,
instead, it has to strictly coordinate with the other non-
elected page copies to advance its state within the round, in
two steps. During the first step it waits in order to receive
all the Inwvalid messages from the concurrent page copies,
then it switches to Writing Read state. This step avoids
the possibility of starting another retry round before the
other copies will exit from the Writing Read state, causing
all the answers to its request to become Copy_Void mes-
sages. In the second step, the page copy waits to receive
all the Fetch_Write messages sent by the concurrent page
copies, then it starts another round. Without this synchro-
nization step a copy could start another round before having
the chance to answer to the requests from concurrent page
copies. That could cause starvation.

4.8 Adding Unmapped and Not Replicated States

When a page is utilized on more than one kernel, the page
must be replicated on those kernels; the replicas that orig-
inate must be coordinated to provide a coherent memory
view to the application. Once replicated, a page can be in
any of the states presented so far, that all together make up
the macro-state Replicated. It is likely that not all the ker-
nels in the system are using a given page; the ones that are
not using it do not need to start the replication algorithm.
We introduce the Unmapped state to model the situation in
which a page is not used by a kernel. All pages start from
the Unmapped state. When only one kernel is using a page,
and all the others have the page in the Unmapped state, the
copy will be unique in the system, and there is no need for
coordination. The page copy is in the Not Replicated state.

If a copy of a page is Replicated on one kernel, all the other
page copies in the system must be in the Replicated state
or Unmapped. At most one copy of a page can be in Not
Replicated state in the system while all the other page copies
have to be in Unmapped. When a kernel wants to access a
page that is locally Unmapped, it has to broadcast a Fetch
message to discover if some other kernel is using it. The page
transits in a wait state, called Fetching, while it collects all
the answers. When a kernel receives a Fetch message, if
it has a page copy in Unmapped state, the answer will be
Copy_Void. Instead, if it has a copy in Not Replicated state,
the page is changing from unique in the system to become
duplicated, so it changes the state to Shared and sends back
a Copy message with the content of that page. If all the
answers collected by the fetching kernel are Copy_Void, it
means that it is the only one that is using that page, so it
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Figure 6: Unmapped and Not Replicated states sub-
graph.

can safely set the state to Not Replicated. If at least one
Copy message is received, the page will become Replicated.

Nonetheless, two concurrent events can happen while fetch-
ing a page: an Invalid message can be received or another
kernel is fetching concurrently a page that was Unmapped
in the system. To model the behavior of our algorithm in
these situations the Fetching state is decomposed into three
substates: Fetching Not Replicated, Fetching Invalid and
Fetching Valid (see Figure 6).

S. IMPLEMENTATION

The Linux kernel is a virtual memory (VM) OS. Applica-
tions and kernel code view virtual memory addresses. We
exploit Linux’s virtual memory subsystem to implement pro-
cess’ virtual address space replication.

The granularity of the physical to virtual mappings is the
architecture page size; in x86 few page sizes are available,
for our purposes we consider a unique page size, 4kB, while
disabling huge pages. Virtual to physical translations are
maintained in the page table. The page table format is
architecture dependent, but generally, it has a tree data
structure; leaf nodes are called Page Table Entry (PTE).
A PTE contains the physical address of the page to which
the virtual address, that we are translating, is referring to;
furthermore it contains protection flags for that page. For
each physical page in the system, Linux associates a struct
page that mirrors such flags and maintains other vital in-
formation. Linux creates a page table for each user process
and it implements on-demand paging. If a set of virtual ad-
dresses belonging to a page, are never accessed, the page is
not mapped; i.e. no virtual to physical translation is avail-
able. Hence the MMU triggers a page fault exception on
such addresses and Linux will add the translation for that
page in the page table. The Linux kernel maintains a layout
of the virtual address space of each process. Such layout
provides enough information to the kernel itself in order to
fill up the page table when the MMU triggers a page fault.
This layout is maintained in a double linked list of struct
vm_area (VMA). Each VMA refers to a virtual continuous
set of pages with the same protection flags and type of back-
ing storage (anonymous or file).



In the prototype version of Popcorn, developed for ccNUMA
hardware, a process has the same virtual to physical mem-
ory map on all kernels, i.e. two threads of the same process
running on different kernels have the same virtual address
space and refer to the same physical pages. While adding
page replication per-kernel, we modify this mechanism: two
different threads of the same process have still the same vir-
tual address space but they refer to different physical pages.

5.1 States Representation

The MMU on the x86 architecture generates an exception
when it is not able to find a translation for a certain address,
and whenever the access protections for a page are violated.
PTE’s flags allow the kernel to protect a page against writing
(RW) and execution. To protect a page from being read
there are two ways: remove it from the page table or clear
the Present flag in the associated PTE.

We added a status field to the struct page that will reflect
the replication state for a page. In the Linux page fault
handler (do_page_fault) the struct page is accessed and
the correct action is taken according to its state. To force
the system not to access a page in an Invalid state we clear
the Present bit in the PTE (such bit is normally used by the
swap subsystem). Pages in the Shared and Modified states
have the Present bit set in the PTE. If a page is in the Shared
state the RW bit must be cleared: every write attempt will
be caught by the MMU and run by our replication protocol.

5.2 Optimizations

When a process is executing on only one kernel, the replica-
tion protocol is off. Page faults are processed by the normal
Linux virtual memory handler. When a process spans differ-
ent kernels, likely only a subset of the address space is being
used in parallel by its threads. The pages that belong to this
subset are kept coherent by the replication algorithm. The
subset of replicated pages is dynamically varying during ex-
ecution. We apply on-demand paging instead of migrating
the whole address space content in bulk with the thread.
To improve the performance of the algorithm several fine
tunings have been adopted.

Local fetch of read-only areas. Pages that belong to a
read only VMA are not kept coherent by the replication
protocol because no replica can modify their data during the
application execution. Read only pages may be fetched from
the local file system to reduce the communication overhead.

Multicast groups. A bitmap containing the indexes of ker-
nels that are currently using a page is added to the struct
page. This bitmap is updated each time a kernel receives a
Fetch request from another kernel, and is piggy backed on
the answer. This allows all kernels to keep an up-to-date ver-
sion of the actual users of a page while reducing the amount
of communication. Broadcast messages in the Replicated
macro-state are substituted with multicasts to the subset of
page’s users.

Owner. An owner field is also added to the struct page.
When a page is in the Replicated macro-state, but doesn’t
have an up-to-date version of the data, a multicast with a
Fetch or Fetch-Write message should be sent. Likely, the
kernel who sent the last Invalid message is the one whose
write will succeed. Each time that an Invalid message is
received, the owner of the page is set to the sender id if an
Ack is sent back to it. By keeping track of the owner we
can directly issue a fetch type of message to it instead of
flooding a system with a multicast. Note that the owner
can be changed while the fetch is happening; in that case

the copy will send another fetch type message in multicast.

6. EVALUATION

In order to test the “correctness” of the page coherency pro-
tocol we developed different (memory bound) micro bench-
marks. These consist of multithreaded programs that con-
currently and iteratively read and write a shared data struc-
ture. We verified that the protocol provides a strict coherent
virtual address space view, on different kernels, by running
several parallel computational algorithms, with different de-
grees of synchronization and sharing (FFT, CG, IS, etc.).
We compared the output of those computational programs
when running on Popcorn and on vanilla Linux with the
same input; our tests show that the outputs always matched,
hence showing the effectiveness of the protocol.

In the following we present an initial evaluation of the pro-
tocol, implemented in Popcorn. We run the experiments in
QEMU x86 while loading a setup with Popcorn OS running
over two kernels. The test application launches two threads,
each pinned on a different kernel; the first thread allocates
an array then creates the second thread that migrates on the
other kernel. Threads synchronize on a shared variable and
then start to operate concurrently on the array in a sequen-
tial fashion for a different number of iterations (1, 10, 30, 60,
90). We recorded the number of messages exchanged in the
system to keep the process address space replicas coherent.
We analyzed the following cases: both threads are reading
the array (Figure 7(b)), one thread is writing and the other
is reading (Figure 7(c)), both threads are writing (Figure
7(d)). We repeat each experiment with different array sizes
(that fits in less than one page, in one page and in 64 pages).

In Figure 7(b) we notice that, as expected for concurrent
readers, increasing the number of iterations does not change
the number of page requests (Fetch and Fetch-Write mes-
sages) in the system. All pages are locally copied during
the first iteration; no more requests are generated in the
following iterations (because no updates are made).

Figure 7(c) shows that in the case of one thread reading and
the other writing, the number of messages to update the
reader is greater then in the previous case. All the other
messages are kept around the same amount, hence the com-
munication overhead is not noticeably increased.

In Figure 7(d) we notice that writing on both threads gen-
erates more messages in the system due to the increased
number of Inwvalid sent by both copies. This reflects the
behavior of the proposed protocol hence insuring that the
implementation adheres to the design. It is worth noting
that in Figure 7(c) and Figure 7(d), for the case of 64 pages,
the number of messages is low due to the implementation
choices in the messaging layer (that reflects the behavior of
the expected non-shared memory heterogeneous-ISA setup).
Because locally accessing the entire array is comparable to
the cost of sending a message, and per-message queues are
independently scheduled by the kernel, a thread operating
on the array may finish a few iterations without sending
any message. Finally, consistently over all the three cases,
changing the array size up to a page makes the protocol gen-
erate traffic for the same amount of messages; most of this
traffic is generated due to thread management and coordi-
nation.

7. CONCLUSIONS

We presented a new page coherency protocol that guaran-
tees a strict coherent view of a process address space when
replicated on different kernels in a replicated-kernel OS.
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Figure 7: Request and Invalid messages exchanged in the system.

We introduced our protocol by extending the MSI cache
coherency protocol with other stable and transient states.
We incrementally defined a set of invariants, which we built
on to define the protocol (in terms of new states, messages
or actions). We demonstrate that the invariants hold. This
work turns into a new protocol specification, innovative from

previous works, including MSI, IVY and vNUMA.

A preliminary implementation of the protocol has been inte-
grated in Popcorn OS. New software components have been
added to the Popcorn and Linux source codes to support per-
group-of-threads replicated address space. Furthermore, we
deployed different optimizations to reduce kernel to kernel
communication overhead due to the coherency protocol.

We evaluate the implementation over different micro bench-
marks in an emulated environment, while showing that the
design properties are satisfied and the implementation is ef-
fective.

In the future we plan to test and compare the replication
protocol on real hardware, including multicore x86, and non-
shared memory PCle-connected heterogeneous-ISA combi-
nations. We are currently working on the cross-ISA messag-
ing layer and cross-ISA execution migration. Furthermore,
we will explore how to exploit the different memory con-
sistency models, deployed by cpu architectures, to improve
scalability of the protocol.
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